LESSON

Hot Enough **Thermometers**

Name	±
Date .	Period

Purpose

To examine how the volumes of a liquid and a gas change in response to temperature.

Part I: Liquid Thermometer

Materials

- small glass vial
- 250 mL beakers (3)
- hot plate
- ice
- salt, 1 tbsp
- small metric ruler

- ethylene glycol (antifreeze), ~25 mL per thermometer
- rubber septum or rubber stopper
- clear plastic straw
- test tube holder, wire
- fine-point permanent marker
- alcohol (to remove markings)

Procedure

Use the permanent marker to mark the level the liquid reaches in the straw in the ethylene glycol thermometer for these five conditions:

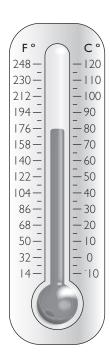
- room temperature
- ice water

- 200 mL ice water with 1 tbsp salt
- vial warmed by your hand boiling water (thermometer should not touch the bottom of the beaker)

Mark the liauid level.

Observations and Analysis

- **I.** What did you generally observe when you warmed and cooled the thermometer?
- **2.** What is happening to the liquid in the vial to make it move up and down in the straw?
- **3.** Create a scale for the thermometer.
 - **a.** Assign numbers for the places you marked on the straw for boiling water and ice water. What numbers did you choose and why?
 - **b.** Based on your newly created temperature scale, estimate the temperature in the room. How did you arrive at your answer?


- **4.** The Fahrenheit scale and the Celsius scale are shown here side by side:
 - **a.** What is the temperature of the room in degrees

Celsius? _____ Fahrenheit? _____

b. What is body temperature in degrees

Celsius? _____ Fahrenheit? _____

- c. Which is hotter, 30 °C or 30 °F? Explain your reasoning.
- **d.** Estimate what 50 °C would be on the Fahrenheit scale.
- **e.** The formula for conversion from degrees Celsius to degrees Fahrenheit is $F = \frac{9}{5}(C) + 32$. Check your answer to part d by performing the calculation.

Part 2: Gas Thermometer

Materials

- 250 mL beakers (3)
- test tube holder, wire
- 10 mL graduated cylinder

■ ice

■ hot plate

food coloring

Procedure

- **I.** Put 200 mL of water with one or two drops of food coloring into a 250 mL beaker. Heat the water to about 80 °C. Place room temperature water in a second beaker. Place crushed ice into a third beaker.
- **2.** Hold the 10 mL graduated cylinder with a test tube clamp and invert it in the hot water for at least a minute. Make sure the mouth of the cylinder is almost touching the bottom of the beaker.
- **3.** Quickly move the graduated cylinder to the room temperature water. Make sure the mouth of the cylinder is almost touching the bottom.
- **4.** Keep the graduated cylinder in the second beaker as you add ice to the water. Record your observations for all three situations.

Analysis

- **I.** Explain how you can use the air sample trapped inside the graduated cylinder as a thermometer.
- **2. Making Sense** Describe how a thermometer works.