L	47
	ACTIVITY

Mirror, Mirror Mirror-Image Isomers

Name .	
Date _	Period

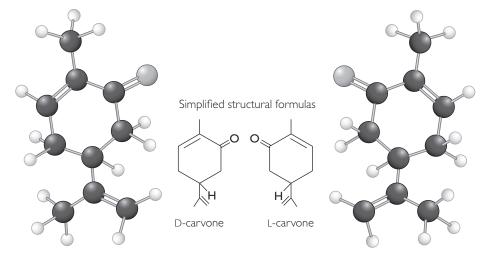
Purpose

To understand how mirror-image molecules can have different properties.

Materials

■ molecular model kit ■ vials A and Z ■ small piece of masking tape

Instructions


- **I.** Build a model of CH₄. Use a black sphere for the carbon atom and white spheres for the hydrogen atoms.
 - **a.** Compare this model with its image in the mirror. Write the similarities and differences in the table.
 - **b.** Build a second molecule that looks like the mirror image. Determine whether the mirror image can be superimposed on the original image. Enter your answer in the table. Take apart the models.
- **2.** Repeat for CH₃F. Use a red sphere for the fluorine atom.
- **3.** Repeat for CHFClBr. Use a red for the fluorine, a blue for the chlorine and a red with a piece of tape on it for the bromine atoms.
- **4.** Repeat for C(CH₃)HFCl. Attach the CH₃ (called a methyl group) to the central carbon. Use a red for the fluorine and a blue for the chlorine.

Molecule	Compare with mirror image		Can the second molecule
	What is the same?	What is different?	be superimposed on the first?
CH ₄			
CH₃F			
CHFClBr			
C(CH ₃)HFCl			

Analysis

- **I.** When a molecule and its mirror-image cannot be superimposed on each other, they are called mirror-image isomers.
 - **a.** Which molecules in the table have mirror-image isomers?

- **b.** What do these two molecules have in common?
- **2.** Carvone has the molecular formula $C_{10}H_{14}O$. The two mirror-image isomers are shown here as ball-and-stick models next to simplified structural formulas.

- **a.** In the simplified structural formulas, label the location of each carbon atom with a C. What is missing from the simplified structural formulas?
- **b.** Examine the molecular models provided by your teacher. Are the mirror images superimposable on each other? Explain why or why not.
- **c.** The L-carvone molecule smells minty. Do you expect D-carvone to smell minty also? Explain your thinking.
- **d.** Smell the contents of vials A and Z. Record your observations.
- **3. Making Sense** Explain why mirror-image isomers have different smells.
- **4. If You Finish Early** Does difluoromethane, CH₂F₂, have a mirror-image isomer? Explain your thinking. Build a model to check your answer.